5cb6dc6460851b56c846c9d9fb8cca42 Jump to content

Золотое сечение - Божественная мера красоты


Рона
 Share

Recommended Posts

leonardo.jpg

Золотое сечение - Божественная мера красоты

Что общего между египетскими пирамидами, картиной Леонардо да Винчи “Мона Лиза”, строением тела человека, подсолнухом, улиткой, строением галактик, микробов и вирусов, молекулы ДНК, законами физики, снежинками или растениями?..

Ответ на этот вопрос сокрыт в удивительных числах и пропорции, которые были обнаружены математиком средневековья Леонардо Фибоначчи. Оказывается, всё мироздание, всё живое на планете и даже человек наделены физическими пропорциями Божественного сечения. Эта вездесущность Золотого числа указывает нам ясную связь всего живого сущего на планете.

http://rutube.ru/tracks/3470458.html

Link to comment
Share on other sites

0804001.jpg

Музыка стихов

Многое в структуре поэтических произведений роднит этот вид искусства с музыкой. Четкий ритм, закономерное чередование ударных и безударных слогов, упорядоченная размерность стихотворений, их эмоциональная насыщенность делают поэзию родной сестрой музыкальных произведений. Каждый стих обладает своей музыкальной формой - своей ритмикой и мелодией. Можно ожидать, что в строении стихотворений проявятся некоторые черты музыкальных произведений, закономерности музыкальной гармонии, а следовательно, и золотая пропорция.

Начнем с величины стихотворения, то есть количества строк в нем. Казалось бы, этот параметр стихотворения может изменяться произвольно. Однако оказалось, что это не так. Например, проведенный Н. Васютинским анализ стихотворений А.С. Пушкина с этой точки зрения показал, что размеры стихов распределены весьма неравномерно; оказалось, что Пушкин явно предпочитает размеры в 5, 8, 13, 21 и 34 строк (числа Фибоначчи).

Многими исследователями было замечено, что стихотворения подобны музыкальным произведениям; в них также существуют кульминационные пункты, которые делят стихотворение в пропорции золотого сечения. Рассмотрим, например, стихотворение А.С. Пушкина "Сапожник":

Картину раз высматривал сапожник

И в обуви ошибку указал;

Взяв тотчас кисть, исправился художник,

Вот, подбочась, сапожник продолжал:

"Мне кажется, лицо немного криво ...

А эта грудь не слишком ли нага?

Тут Апеллес прервал нетерпеливо:

"Суди, дружок, не выше сапога!"

Есть у меня приятель на примете:

Не ведаю, в каком бы он предмете

Был знатоком, хоть строг он на словах,

Но черт его несет судить о свете:

Попробуй он судить о сапогах!

Проведем анализ этой притчи. Стихотворение состоит из 13 строк. В нем выделяется две смысловые части: первая в 8 строк и вторая (мораль притчи) в 5 строк (13, 8, 5 - числа Фибоначчи).

Одно из последних стихотворений Пушкина "Не дорого ценю я громкие права …" состоит из 21 строки и в нем выделяется две смысловые части: в 13 и 8 строк.

Не дорого ценю я громкие права,

От коих не одна кружится голова.

Я не ропщу о том, что отказали боги

Мне в сладкой участи оспаривать налоги

Или мешать царям друг с другом воевать;

И мало горя мне, свободно ли печать

Морочит олухов, иль чуткая цензура

В журнальных замыслах стесняет балагура.

Все это, видите ль, слова, слова, слова.

Иные, лучшие, мне дороги права:

Иная, лучшая, потребна мне свобода:

Зависеть от царя, зависеть от народа -

Не все ли нам равно? Бог с ними.

Никому

Отчета не давать, себе лишь самому

Служить и угождать; для власти, для ливреи

Не гнуть ни совести, ни помыслов, ни шеи;

По прихоти своей скитаться здесь и там,

Дивясь божественным природы красотам,

И пред созданьями искусств и вдохновенья

Трепеща радостно в восторгах умиленья,

Вот счастье! Вот права ...

Характерно, что и первая часть этого стиха (13 строк) по смысловому содержанию делится на 8 и 5 строк, то есть все стихотворение построено по законам золотой пропорции.

Представляет несомненный интерес анализ романа "Евгений Онегин", сделанный Н. Васютинским. Этот роман состоит из 8 глав, в каждой из них в среднем около 50 стихов. Наиболее совершенной, наиболее отточенной и эмоционально насыщенной является восьмая глава. В ней 51 стих. Вместе с письмом Евгения к Татьяне (60 строк) это точно соответствует числу Фибоначчи 55!

Н Васютинский констатирует:

"Кульминацией главы является объяснение Евгения в любви к Татьяне - строка "Бледнеть и гаснуть ... вот блаженство!". Эта строка делит всю восьмую главу на две части - в первой 477 строк, а во второй - 295 строк. Их отношение равно 1,617! Тончайшее соответствие величине золотой пропорции! Это великое чудо гармонии, совершенное гением Пушкина!".

0804002.jpg

Знаменитое стихотворение Лермонтова "Бородино" делится на две части: вступление, обращенное к рассказчику и занимающее лишь одну строфу ("Скажите, дядя, ведь недаром …"), и главную часть, представляющее самостоятельное целое, которое распадается на две равносильные части. В первой из них описывается с нарастающим напряжением ожидание боя, во второй - сам с постепенным снижением напряжения к концу стихотворения. Граница между этими частями является кульминационной точкой произведения и приходится как раз на точку деления его золотым сечением.

Главная часть стихотворения состоит из 13 семистиший, то есть из 91 строки. Разделив ее золотым сечением (91:1,618 = 56,238), убеждаемся, что точка деления находится в начале 57-го стиха, где стоит короткая фраза: "Ну ж был денек!". Именно эта фраза представляет собой "кульминационный пункт возбужденного ожидания", завершающей первую часть стихотворения (ожидание боя) и открывающий вторую его часть (описание боя).

Таким образом, золотое сечение играет в поэзии весьма осмысленную роль, выделяя кульминационный пункт стихотворения.

Многие исследователи поэмы Шота Руставели "Витязь в тигровой шкуре" отмечают исключительную гармоничность и мелодичность его стиха.

0804003.jpg

Эти свойства поэмы грузинский ученый академик Г.В. Церетели относит за счет сознательного использования поэтом золотого сечения как в формировании формы поэмы, так и в построении ее стихов.

Поэма Руставели состоит из 1587 строф, каждая их которых состоит из четырех строк. Каждая строка состоит из 16 слогов и делится на две равные части по 8 слогов в каждом полустишии. Все полустишия делятся на два сегмента двух видов: А - полустишие с равными сегментами и четным количеством слогов (4+4); В - полустишие с несимметричным делением на две неравные части (5+3 или 3+5). Таким образом, в полустишии В получаются соотношения 3:5:8, что является приближением к золотой пропорции.

Установлено, что в поэме Руставели из 1587 строф больше половины (863) построены по принципу золотого сечения.

Link to comment
Share on other sites

Золотое сечение в живописи

Исследуя композиционную структуру картин - шедевров мирового изобразительного искусства, искусствоведы обратили внимание на тот факт, что в пейзажных картинах широко используется закон золотого сечения. Примером такой картины является картина И.И. Шишкина "Корабельная роща".

0805001.jpg

Link to comment
Share on other sites

На этой знаменитой картине с очевидностью просматриваются мотивы золотого сечения. Ярко освещенная солнцем сосна (стоящая на первом плане) делит картину золотым сечением по горизонтали. Справа от сосны - освещенный солнцем пригорок. Он делит картину золотым сечением по вертикали. Слева от главной сосны находится много сосен - при желании можно с успехом продолжить деление золотым сечением по горизонтали левой части картины. Наличие в картине ярких вертикалей и горизонталей, делящих ее в отношении золотого сечения, придает ей характер уравновешенности и спокойствия в соответствии с замыслом художника.

Тот же принцип мы видим в картине И.Е. Репина "А.С. Пушкин на акте в Лицее 8 января 1815 года".

0805002.jpg

Link to comment
Share on other sites

0805003.jpg

Еще один пример - картина Н.Н. Ге "Александр Сергеевич Пушкин в селе Михайловском".

В этой картине фигура Пушкина также поставлена художником слева на линии золотого сечения. Композиционное построение картины подобно картине Репина. Голова военного, с восторгом слушающего чтение поэта, находится на другой вертикальной линии золотого сечения.

Широко использовал золотое сечение в своем творчестве талантливый русский художник Константин Васильев, рано ушедший из жизни. Еще будучи студентом Казанского художественного училища, он впервые услышал о "золотом сечении". И с тех пор, приступая к каждой своей работе, он всегда начинал с того, что мысленно пытался определить на холсте ту основную точку, куда должны были стягиваться, как к невидимому магниту, все сюжетные линии картины. Ярким примером картины, построенной "по золотому сечению", является картина "У окна".

О чем хотел поведать нам художник в этой картине? Об этом можно лишь догадываться. Одно бесспорно - перед нами жизнь как она есть. То, что двое этих молодых людей бесконечно любят друг друга, мы понимаем при первом взгляде на картину. Но если он весь во власти своего неудержимого порыва, готов отстаивать свою любовь перед кем угодно, то ее чувства что-то сдерживает. Что именно - страх, гордыня, верность родовым традициям: А может быть, наитие, природное чутье, более свойственное женскому сердцу, подсказывает ей, что не время им сейчас думать о любви?

0805004.jpg

Link to comment
Share on other sites

0805005.jpg

Геометрическая модель рассмотренного на фотографии участка кактуса представлена ниже в виде растровой сетки, в которой наклонные линии (с правым и левым наклоном) моделируют принцип расположения ареолов на поверхности кактуса.

0805006.jpg

Анализ картины с учетом "филлотаксистной" растровой сетки привел Патури к следующему заключению:

"Все основные линии перспективы совпадают с растром. Даже множество второстепенных для сюжета деталей и форм художник поместил в то поле внутреннего напряжения, на котором и построена картина. Обратите внимание на виднеющийся на горизонте небольшой холм в правой стороне полотна рядом с церковной колокольней, на ветви большого дерева, на очертание кучевого облака, лежащего под созвездием, на задние лапы и линию живота крупной дикой кошки, на направление оси перекинутой вазы, на воздетую правую руку сатира в венке из виноградных лоз в правом углу холста и, наконец, на поднятую ногу лошади".

Тому, кто посчитает это делом случая или полагает, что картина Тициана является исключением, мы рекомендуем перенести растровую сетку на прозрачную бумагу и затем наложить ее на репродукции некоторых художественных полотен. Он будет изумлен тем, насколько часто композиции картин станут повторять динамику золотого сечения вплоть до ее зеркального отражения". Такие произведения, как "Ливийская сивилла" Микеланджело, "Поклонение пастухов" Тинторетто, "Мадонна с длинной шеей" Пармиджанино, "Азия" Тьеполо (зеркальное отражение!), "Вакханалия" Пуссена, "Драка крестьян при игре в карты" Брауэра или "Праздник любви" Ватто (зеркальное отражение!), - это немногие примеры, которые лишь подтверждают общую закономерность.

И далее Патури делает следующее важное заключение:

"Во все времна художники, осознанно или неосознанно, учились постигать законы эстетического восприятия, наблюдая природу. Живописцев всегда пленяла простая и одновременно рациональная геометрия форм биологического роста".

0805007.jpg

http://www.goldenmuseum.com/index_rus.html

Link to comment
Share on other sites

Сергей Вербин

Мозг и активное долголетие. Метод золотого сечения

Кому не хочется чувствовать себя после пятидесяти лет так же, как в тридцать? Серьезные заболевания или просто обычное недомогание лишают человека возможности активного участия в собственной жизни. А сколько чего еще хочется сделать…

Книга Сергея Вербина «Мозг и активное долголетие» рассказывает об уникальном методе «Золотое сечение». Исследования головного мозга и космическая медицина позволили по-новому взглянуть на проблему долголетия. Автор объясняет, что быть здоровым — это наука.

Используя резервные возможности головного мозга, вы научитесь быть здоровыми и сможете, несмотря на возраст, жить полной жизнью.

В жизни каждого человека случаются ситуации, требующие быстрого ответа: куда обратиться за медицинской помощью? Чем и как лечиться? Какие лекарства лучше? Эти и другие проблемы особенно волнуют людей, кто перешагнул тот возрастной рубеж, когда в медицинской справке пишут: "Практически здоров". Проблема старения становится в наши дни все более актуальной. Результаты научных исследований позволили продлить жизнь человека до ранее недостижимых пределов. Теперь во всем мире считается, что молодость длится до 50 лет, затем идут годы зрелости и преклонного возраста, и только цифра 90 определяет начало старения.

В развитых странах, в том числе в России, создаются научные концепции здорового долголетия и провозглашаются государственные программы социальной поддержки старшего поколения. В ООН учрежден и ежегодно празднуется "День пожилого человека". Вся медицина, а не только геронтология, разрабатывает методики сохранения работоспособности и здоровья для человека "третьего" возраста.

Проведенные в нашем НИИ испытания дают ответ на многие вопросы, и большую помощь в этом может оказать методика "Золотое сечение".

Сведения о Золотом сечении встречаются в трудах Пифагора, Платона, Аристотеля, Евклида. Сам термин приписывают Леонардо да Винчи, заметившему в законах гармонии основной эстетический принцип творчества.

Не вдаваясь в научные подробности, подчеркнем главное для нас: законы Золотого сечения, то есть абсолютной гармонии, нетленны, им подчиняются все органы и системы живого человеческого тела, его душа, его мысли.

Итак, определим наши приоритеты.

- Первое место занимает интеллект. От состояния наших мыслей напрямую зависит здоровье тела. Каждый врач знает: оптимистичные мысли активизируют резервные возможности головного мозга. По его "воле", в свою очередь, повышается иммунитет к болезням, крепнет сила сопротивления недугам, даже самым тяжким.

- Второе место среди составляющих нашего здоровья занимает физическое совершенство. Стремление к нему - есть стремление к золотой пропорции!

- Третьей составляющей благополучного существования личности назовем гармонию ума, тела, духовного совершенства. Все это должно быть нераздельно, взаимозависимо.

Необходимость такой связи не вымысел ученых-теоретиков - так создан человек: с рождения ему предписано находиться в гармонии с собой, с внешним миром, дабы "не выпасть" из универсальных структур мироздания, сотворенных неведомым, загадочным Вселенским Разумом.

Болезнь - не что иное, как отклонение от классических пропорций. Наша задача состоит в том, чтобы эти отклонения уменьшить.

Книга "Активное долголетие" расскажет о том, как исследования головного мозга и космическая медицина позволили по-новому взглянуть на проблему долголетия, предложит конкретные рекомендации, проверенные на своем опыте.

"Для человека страшны четыре вещи: смерть, старость, безумие и апоплексия", - писал Александр Дюма-отец в XIX веке. Сегодня, вооружившись знаниями и опытом, человек способен поставить заслон бедам, названным автором "Трех мушкетеров". Разумеется, кроме спасения от смерти, естественного для живых существ ухода в небытие.

Но удлинить свой путь до финала - более того, сделать эту дорогу менее тяжкой, украшенной живым интересом ко всему окружающему, насыщенной активным участием в жизни, - мог бы практически каждый.

Группа научных сотрудников НИИ приборостроения много лет работала над проблемами расширения предельных возможностей головного мозга человека. Это было вызвано тем, что прогресс потребовал от нас новых открытий, а также тем, что посланец в межзвездные миры должен быть выносливым, сильным, здоровым и умным.

Результатов наблюдений, практических рекомендаций хватит и на тех, кто остается на земле, - простых российских граждан. В Скандинавских странах в 80-е годы была разработана программа укрепления здоровья "Тасис", которая позволила получить неплохие результаты для продления жизни. В итоговом отчете говорилось, что применение программы позволяет продлить жизнь на 10 лет. Причем приписка в итоговом документе гласила, что это возможно без использования космических технологий. Но мы-то в космической медицине как раз использовали весь цвет передовой научной мысли. И получили очень хорошие результаты в области продления жизни.

Однако хотелось чего-то таинственного, неземного, мистического, выходящего за пределы воображения. Это что-то должно было не только продлить саму жизнь, но и позволило бы узнать: сколько, собственно, нам осталось? Причем метод должен был иметь строго научную основу, выверенную в течение десятков лет и подтвержденную тысячами экспериментов.

И вот однажды нам на глаза попались исследования НИИ профилактической медицины "Метод определения продолжительности жизни". Отличаясь редкой любознательностью и имея оборудование и специалистов, мы создали компьютерную программу. Основная идея определения продолжительности жизни включала сто показателей (состав крови, вес, рост, возраст, пол, продолжительность жизни родственников и т. д.).

Прошло несколько месяцев, и задача была решена - программа заработала.

Первые результаты повергли разработчиков в тихий шок: да, мы знали, что это должно случиться, но никто даже не допускал и мысли, что это может наступить так скоро. И главное, неожиданно.

Link to comment
Share on other sites

z10.jpg

“Золотое сечение” в архитектуре

Одним из красивейших произведений древнегреческой архитектуры является Парфенон (V век до н.э.).

Строительством храма Парфенон руководил архитектор Фидий (краткое сообщение о этом произведении).

z12.jpg

Парфенон — главный храм в древних Афинах, посвященный покровительнице этого города и всей Аттики, богине Афине-Девственнице (). Он красовался на самом высоком пункте афинского акрополя, там, где перед тем стоял не вполне достроенный храм той же богини, заложенный еще до нашествия. По окончании персидских войн, в правление Перикла, приступили к сооружению, на месте прежнего святилища, нового, более обширного и роскошного храма, при чем пущено в ход искусство лучших из тогдашних художников и употреблены огромные денежные средства. Строителями П. называют Иктина и Калликрата; первому, по-видимому, принадлежал проект этого здания, а второй заведовал производством строительных работ. Велики скульптор Фидий и сам Перикл наблюдали за постройкой, продолжавшейся около десяти лет, с 448 по 438 г. До Р. Хр. На прямоугольной платформе (в 68,4 м длины и в 30,38 м ширины), сложенной из пирейского камня и на которую можно было со всех сторон подниматься по трем ступеням, высился построенный из пентелийского мрамора величественный периптер дорического стиля с восемью колоннами в каждом коротком фасе и с семнадцатью в каждом длинном. Вышиной эти колонны были в 11 м, диаметр их разреза в нижнем конце равнялся 1,8 м. Окруженный этой колоннадой, стоит и посей день.

Отношение длины здания Парфенона в Афинах к его высоте равно Ф (фи).

КВ: АВ = СВ :АС= АВ:ВС = Ф.

Другим примером из архитектурной древности является Пантеон, храм всех богов в Риме.

Известный русский архитектор Казаков Матвей Федорович в своем творчестве широко использовал “золотое сечение”. Его талант был многогранным, но в большей степени он раскрылся в многочисленных осуществленных проектах жилых домов и усадеб. Например золотое сечение можно обнаружить в архитектуре здания сената в Кремле. По проекту Казакова построена в Москве Голицынская больница, которая в настоящее время называется “Первая клиническая” больница имени Пирогова.

z14.jpgz14.jpg

Петровский дворец в Москве. Построен по проекту М.Ф. Казакова.

Link to comment
Share on other sites

z15.jpg

Петровский дворец в Москве 1776-1796 гг.

Еще один архитектурный шедевр Москвы – дом Пашкова (1786 г.)– является одним из наиболее совершенным произведением архитектуры Василия Ивановича Баженова.

Прекрасное творение прочно вошло в ансамбль центра современной Москвы. Наружный вид сохранился почти без изменения до наших дней, ныне Российская государственная библиотека.

Многие высказывания зодчего заслуживают внимания и в наши дни. О своем любимом искусстве В. Баженов говорил: “Архитектура – главнейшие имеет три предмета: красоту, спокойность и прочность здания … К достижению сего служит руководством знание пропорции , перспективы , механики или вообще физики ,а всем им общим вождем является рассудок”

z16.jpg

z17.jpg

Внимание людей издавна привлекала совершенство формы пятиконечная звезда.

АD:АС = АС:СD=АВ:ВС=Ф.

Пятиконечной звезде - около 3000 лет. Ее первые изображения донесли до нас вавилонские глиняные таблички. Из древней Вавилонии в Средиземноморье, как полагают, звездчатый пятиугольник перевез Пифагор и сделал его символом жизни и здоровья, а также тайным опознавательным знаком.

Сегодня пятиконечная звезда реет на флагах едва ли не половины стран мира. Чем же объясняется такая популярность? Тем, что совершенная форма этой фигуры радует глаз. Звездчатый пятиугольник буквально соткан из пропорций, и прежде всего золотой пропорции.

Link to comment
Share on other sites

z18.jpg

“Золотое сечение” в скульптуре

Скульптурные сооружения, памятники воздвигаются, чтобы увековечить знаменательные события, сохранить в памяти потомков имена прославленных людей их подвиги и деяния.

Известно, что еще в древности основу скульптуры составляла теория пропорции. Отношение частей человеческого тела связывалось с формулой “золотого сечения”.

Пропорции “золотого сечения” создают впечатления гармонии красоты, поэтому скульпторы использовали их в своих произведениях.

Скульпторы утверждают, что талия делит совершенное человеческое тело в отношении “золотого сечения”. Так например, знаменитая статуя Аполлона Бельведерского состоит из частей, делящихся по золотым отношениям.

z19.jpg

Аполлон Бельведерский

Великий древнегреческий скульптор Фидий часто использовал “золотое сечение” в своих произведениях.

Самая знаменитая из них была статуя Зевса Олимпийского, которая считалась одним из чудес света и статуя Афины Парфенос.

http://rustimes.com/blog/post_1177437753.html

Link to comment
Share on other sites

Этюды Шопена в освещении золотого сечения

Музыка - вид искусства, который отражает действительность и воздействует на человека посредством осмысленных и особым образом организованных звуковых последовательностей, состоящих из тонов. Сохраняя некоторое подобие звуков реальной жизни, музыкальные звучания принципиально отличаются от последних строгой высотной и временной (ритмической) организованностью ("музыкальная гармония"). Начиная с античного периода, выяснение законов "музыкальной гармонии" является одним из важных направлений научных исследований.

Пифагору приписывают установление двух основных законов гармонии в музыке: (1) если отношение частот колебаний двух звуков описывается малыми числами, то они дают гармоническое звучание; (2) чтобы получить гармоническое трезвучие, нужно к аккорду из двух консонансных звуков добавить третий звук, частота колебаний которого находится в гармонической пропорциональной связи с двумя первыми. Значение работ Пифагора по научному объяснению основ музыкальной гармонии трудно переоценить. Это была первая научно обоснованная теория музыкальной гармонии. Познав истинность и красоту своей музыкальной теории, Пифагор пытался распространить ее на космологию; по его представлениям и планеты Солнечной системы располагались в соответствии с музыкальной октавой ("гармония сфер").

Любое музыкальное произведение имеет временное протяжение и делится некоторыми вехами ("эстетическими вехами") на отдельные части, которые обращают на себя внимание и облегчают восприятие целого. Этими вехами могут быть динамические и интонационные кульминационные пункты музыкального произведения. Существуют ли какие-либо закономерности возникновения "эстетических вех" в музыкальном произведении? Попытка ответить на этот вопрос была предпринята русским композитором Л.Сабанеевым. В большой статье "Этюды Шопена в освещении золотого сечения" (1925 г.) он показывает, что отдельные временные интервалы музыкального произведения, соединяемые "кульминационным событием", как правило, находятся в соотношении золотого сечения. Сабанеев пишет:

"Все такие события инстинктом автора приурочиваются к таким пунктам длины целого, что они собою делят временные протяжения на отдельные части, находящиеся в отношениях "золотого сечения". Как показывают наблюдения, приурочение подобных эстетических "вех" к пунктам деления общего или частичного протяжения в "золотом" отношении выполняется нередко с огромной точностью, что тем более удивительно, что при отсутствии у поэтов и у авторов музыки всякого знания о подобных вещах, это все является исключительно следствием внутреннего чувства стройности".

Анализ огромного числа музыкальных произведений позволил Сабанееву сделать вывод о том, что организация музыкального произведения построена так, что его кардинальные части, разделенные вехами, образуют ряды золотого сечения. Такая организация произведения соответствует наиболее экономному восприятию массы отношений и поэтому производит впечатление наивысшей "стройности" формы. По мнению Сабанеева, количество и частота использования золотого сечения в музыкальной композиции зависит от "ранга композитора". Наиболее высокий процент совпадений отмечается у гениальных композиторов, то есть "интуиция формы и стройности, как это и следует ожидать, наиболее сильна у гениев первого класса".

По наблюдениям Сабанеева, в музыкальных произведениях различных композиторов обычно констатируется не одно золотое сечение, сопряженное с происходящим возле него "эстетическим событием", а целая серия подобных сечений. Каждое такое сечение отражает свое музыкальное событие, качественный скачок в развитии музыкальной темы. В изученных им 1770 сочинениях 42 композиторов наблюдалось 3275 золотых сечений; количество произведений, в которых наблюдалось хотя бы одно золотое сечение, составило 1338. Наибольшее количество произведений, в которых имеется золотое сечение, у Аренского (95%), Бетховена (97%), Гайдна (97%), Моцарта (91%), Скрябина (90%), Шопена (92%), Шуберта (91%).

Наиболее детально были изучены Сабанеевым все 27 этюдов Шопена. В них обнаружено 154 золотых сечения; всего в трех этюдах золотое сечение отсутствовало. В некоторых случаях строение музыкального произведения сочетало в себе симметричность и золотое сечение одновременно; в этих случаях оно делилось на несколько симметричных частей, в каждой из которых появлялось золотое сечение. У Бетховена также сочинения делятся на две симметричные части, а внутри каждой из них наблюдается проявление золотого сечения.

Большое внимание исследованию законов музыкальной гармонии уделял известный русский искусствовед Э.К. Розенов. Он утверждал, что в музыкальных произведениях и поэзии существуют строгие пропорциональные отношения:

"Явные черты "природного творчества" мы должны признать в тех случаях, когда в сильно одухотворенных созданиях гениальных авторов, порожденных мощным стремлением духа к правде и красоте, мы совершенно неожиданно обнаруживаем какую-то неподдающуюся непосредственному сознанию таинственную закономерность числовых отношений".

Э. Розенов считал, что золотое сечение должно играть в музыке выдающуюся роль как средство для приведения однородных явлений в соответствие, созданное самой природой:

"Золотое деление могло бы: (1) устанавливать в музыкальном произведении изящное, соразмерное отношение между целым и его частями; (2) являться специальным местом подготовленного ожидания, совмещаясь с кульминационными пунктами (силы, массы, движения звуков) и с разного рода выдающимися, с точки зрения автора, эффектами; (3) направлять внимание слушателя на те мысли музыкального произведения, которым автор придает наиболее важное значение, которые желает поставить в связь и соответствие между собой".

Розенов выбирает для анализа ряд типичных произведений выдающихся композиторов: Баха, Бетховена, Шопена, Вагнера. Например, исследуя Хроматическую фантазию и фугу Баха, за единицу меры во времени была принята длительность четверти. В этом произведении содержится 330 таких единиц меры. Золотое деление этого интервала приходится на 204-ю четверть от начала. Этот момент золотого сечения точно совпадает с ферматой (в нотной грамоте знак ферматы увеличивает длительность звука или паузы обычно в 1,5-2 раза), которая отделяет первую часть произведения (прелюдию) от второй. Поразительную соразмерность частей демонстрирует также фуга, следующая за фантазией. При взгляде на схему гармоничного анализа фуги "невольно приходишь в священный трепет перед гениальностью мастера, воплотившего силою художественной чуткости до такой степени точности сокровенные законы природного творчества".

Э. Розеновым подробно были разобраны: финал сонаты cis-moll Бетховена, Fantasia-Impromtu Шопена, вступление к "Тристану и Изольде" Вагнера. Во всех этих произведениях золотое сечение встречается очень часто. Особое внимание автор обращает на фантазию Шопена, которая была создана экспромтом и не подлежала никакой правке, а значит и не было сознательного применения закона золотого сечения, которое присутствует в этом музыкальном произведении вплоть до мелких музыкальных образований.

Итак, можно признать, что золотая пропорция является критерием гармонии композиции музыкального произведения.

http://www.goldenmuseum.com/index_rus.html

Link to comment
Share on other sites

История золотого сечения

Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.

Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.

Платон (427...347 гг. до н.э.) также знал о золотом делении. Его диалог “Тимей” посвящен математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления.

В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления.

В дошедшей до нас античной литературе золотое деление впервые упоминается в “Началах” Евклида. Во 2-й книге “Начал” дается геометрическое построение золотого деления После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам “Начал” Евклида. Переводчик Дж. Кампано из Наварры (III в.) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне. Они были известны только посвященным.

В эпоху Возрождения усиливается интерес к золотому делению среди ученых и художников в связи с его применением как в геометрии, так и в искусстве, особенно в архитектуре Леонардо да Винчи, художник и ученый, видел, что у итальянских художников эмпирический опыт большой, а знаний мало. Он задумал и начал писать книгу по геометрии, но в это время появилась книга монаха Луки Пачоли, и Леонардо оставил свою затею. По мнению современников и историков науки, Лука Пачоли был настоящим светилом, величайшим математиком Италии в период между Фибоначчи и Галилеем. Лука Пачоли был учеником художника Пьеро делла Франчески, написавшего две книги, одна из которых называлась “О перспективе в живописи”. Его считают творцом начертательной геометрии.

Лука Пачоли прекрасно понимал значение науки для искусства. В 1496 г по приглашению герцога Моро он приезжает в Милан, где читает лекции по математике. В Милане при дворе Моро в то время работал и Леонардо да Винчи. В 1509 г. в Венеции была издана книга Луки Пачоли “Божественная пропорция” с блестяще выполненными иллюстрациями, ввиду чего полагают, что их сделал Леонардо да Винчи. Книга была восторженным гимном золотой пропорции. Среди многих достоинств золотой пропорции монах Лука Пачоли не преминул назвать и ее “божественную суть” как выражение божественного триединства бог сын, бог отец и бог дух святой (подразумевалось, что малый отрезок есть олицетворение бога сына, больший отрезок – бога отца, а весь отрезок – бога духа святого).

Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название золотое сечение. Так оно и держится до сих пор как самое популярное.

В то же время на севере Европы, в Германии, над теми же проблемами трудился Альбрехт Дюрер. Он делает наброски введения к первому варианту трактата о пропорциях. Дюрер пишет. “Необходимо, чтобы тот, кто что-либо умеет, обучил этому других, которые в этом нуждаются. Это я и вознамерился сделать”.

Судя по одному из писем Дюрера, он встречался с Лукой Пачоли во время пребывания в Италии. Альбрехт Дюрер подробно разрабатывает теорию пропорций человеческого тела. Важное место в своей системе соотношений Дюрер отводил золотому сечению. Рост человека делится в золотых пропорциях линией пояса, а также линией, проведенной через кончики средних пальцев опущенных рук, нижняя часть лица – ртом и т.д. Известен пропорциональный циркуль Дюрера.

Великий астроном XVI в. Иоган Кеплер назвал золотое сечение одним из сокровищ геометрии. Он первый обращает внимание на значение золотой пропорции для ботаники (рост растений и их строение).

Кеплер называл золотую пропорцию продолжающей саму себя “Устроена она так, – писал он, – что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности”.

Построение ряда отрезков золотой пропорции можно производить как в сторону увеличения (возрастающий ряд), так и в сторону уменьшения (нисходящий ряд).

Если на прямой произвольной длины, отложить отрезок m, рядом откладываем отрезок M.

В последующие века правило золотой пропорции превратилось в академический канон и, когда со временем в искусстве началась борьба с академической рутиной, в пылу борьбы “вместе с водой выплеснули и ребенка”. Вновь “открыто” золотое сечение было в середине XIX в. В 1855 г. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд “Эстетические исследования”. С Цейзингом произошло именно то, что и должно было неминуемо произойти с исследователем, который рассматривает явление как таковое, без связи с другими явлениями. Он абсолютизировал пропорцию золотого сечения, объявив ее универсальной для всех явлений природы и искусства. У Цейзинга были многочисленные последователи, но были и противники, которые объявили его учение о пропорциях “математической эстетикой”.

Справедливость своей теории Цейзинг проверял на греческих статуях. Наиболее подробно он разработал пропорции Аполлона Бельведерского. Подверглись исследованию греческие вазы, архитектурные сооружения различных эпох, растения, животные, птичьи яйца, музыкальные тона, стихотворные размеры. Цейзинг дал определение золотому сечению, показал, как оно выражается в отрезках прямой и в цифрах. Когда цифры, выражающие длины отрезков, были получены, Цейзинг увидел, что они составляют ряд Фибоначчи, который можно продолжать до бесконечности в одну и в другую сторону. Следующая его книга имела название “Золотое деление как основной морфологический закон в природе и искусстве”. В 1876 г. в России была издана небольшая книжка, почти брошюра, с изложением этого труда Цейзинга. Автор укрылся под инициалами Ю.Ф.В. В этом издании не упомянуто ни одно произведение живописи.

В конце XIX – начале XX вв. появилось немало чисто формалистических теории о применении золотого сечения в произведениях искусства и архитектуре. С развитием дизайна и технической эстетики действие закона золотого сечения распространилось на конструирование машин, мебели и т.д.

http://sapr.mgsu.ru/biblio/arxitekt/zolsech/zolsech1.htm

Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
 Share

  • Recently Browsing   0 members

    • No registered users viewing this page.
×
×
  • Create New...